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a b s t r a c t

An interface-enriched generalized finite element method (GFEM) is introduced for 3D problems with
discontinuous gradient fields. The proposed method differs from conventional GFEM by assigning the
generalized degrees of freedom to the interface nodes, i.e., nodes generated along the interface when cre-
ating integration subdomains, instead of the nodes of the original mesh. A linear combination of the
Lagrangian shape functions in these integration subelements are then used as the enrichment functions
to capture the discontinuity in the gradient field. This approach provides a great flexibility for evaluating
the enrichment functions, including for cases where elements are intersected with multiple interfaces.
We show that the method achieves optimal rate of convergence with meshes which do not conform to
the phase interfaces at a computational cost similar to or lower than that of conventional GFEM. The
potential of the method is demonstrated by solving several heat transfer problems with discontinuous
gradient field encountered in particulate and fiber-reinforced composites and in actively-cooled micro-
vascular materials.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The generalized/extended finite element methods (GFEM/
XFEM), first introduced in [1–4], is now widely used by the compu-
tational mechanics community to solve problems with strong or
weak discontinuities, i.e., problems presenting discontinuities in
the solution or gradient fields, respectively. By eliminating the
need for meshes that conform to the internal geometry of the prob-
lem and/or propagating discontinuities independently of the finite
element discretization, these methods provide a level of flexibility
absent in standard finite element methods (FEM). This unique
capability is achieved by incorporating a priori information on
the solution field in the numerical approximation with the aid of
enrichment functions. For problems with weak or strong disconti-
nuities, appropriate enrichment functions are selected to capture
the jump in the gradient or solution fields, respectively, allowing
for meshes that are independent of the morphology of the prob-
lem. Application areas of the GFEM/XFEM include fracture
mechanics [5–10], multiscale modeling [11], contact problems
[12,13], solidification [14], modeling of dislocations [15,16], and
phase interfaces [17–19]. A comprehensive review of the GFEM/
XFEM method, the associated enrichment functions, and their
implementation issues is provided in [20].

In the current paper, we present an interface-enriched general-
ized finite element method (IGFEM) for 3D problems with C0-
continuous fields such as those encountered in thermal and
structural problems involving composites [21–23], polycrystalline
materials [24,25], fluid/solid interaction [26], and conjugate prob-
lems with multiple phases [27]. Unlike in conventional GFEM
where the generalized degrees of freedom (dofs) are assigned to
the nodes of the original mesh, the IGFEM assigns the generalized
dofs to interface nodes created by the intersection of the phase
interface with the non-conforming mesh. Armero and co-workers
[28] have proposed the introduction of element-based interface
enrichments for strongly discontinuous problems where the gener-
alized dofs are associated with the elements themselves. However,
the approach adopted in the present work relies on the enrichment
of the interface nodes and thereby enforcing continuity of the
enriched solution between adjacent elements.

A unique feature of the IGFEM is the evaluation of the
enrichment functions, which are obtained through a linear combi-
nation of the standard Lagrangian shape functions of the integra-
tion elements. Hence, regardless of the orientation and number
of interfaces intersecting with the edges of an element, the IGFEM
provides a simple approach to construct the enrichment functions
and can be considered as an h-hierarchical method [29]. In this
work, we present a strategy for creating the integration elements
and the corresponding enrichment functions for tetrahedral ele-
ments. The formulation of the IGFEM for 2D problems has been
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previously presented in [30], together with a convergence study
and a detailed comparison of the this method with conventional
GFEM. In the current work, besides extending the IGFEM formula-
tion to 3D problems, we put more emphasis on how the IGFEM
handles geometrical complexities involved in these problems and
study the application of this method for solving several engineer-
ing problems with intricate internal geometries.

The outline of this paper is as follows: In the next section, we
present the strong and weak forms of the convection–diffusion
equation describing the thermal response of actively cooled
microvascular composites that motivated this work. It should be
noted, however, that although the thermal convection–diffusion
equation is the focus of this work, the IGFEM can readily extended
for other problems, including those characterized by strong discon-
tinuities as briefly discussed later in the manuscript. In the remain-
der of that section, we review some of the key features of
conventional GFEM approximations before introducing the 3D
IGFEM formulation based on a discretization with tetrahedral ele-
ments. A short discussion is also provided in that section to com-
pare the computational cost of the 3D IGFEM with that of
conventional GFEM. We then analyze in Section 3 the performance
of the IGFEM by performing a detailed convergence study with
non-conforming meshes and comparing the results with those of
the standard FEM based on matching meshes. Finally, we present
in Section 4 the IGFEM solution to several heat transfer problems
with weak discontinuities to illustrate the capabilities of the meth-
od to handle thermal problems with a variety of intricate internal
geometries.

2. Convection–diffusion equation and GFEM/IGFEM
formulations

Consider the open domain X ¼ Xs [Xf � R3 and its closure X.
The domain is partitioned into two separate regions Xs and Xf cor-
responding to solid and fluid phases, respectively. A velocity field
v : X! R3 is then defined for the convective term, with v ¼ 0 in
Xs where only conduction contributes to the heat transfer. The
boundary C ¼ X�X with the outward unit normal vector n has
been divided into three mutually exclusive partitions Cu; Cq, and
Ch. Here, Cu corresponds to Dirichlet boundary conditions with
the prescribed temperature �u : Cu ! R;Cq corresponds to Neu-
mann boundary conditions with the heat flux q : Cq ! R, and Ch

represents the region with Robin (convective) boundary conditions
with the heat transfer coefficient h : Ch ! R, and ambient temper-
ature u1 : Ch ! R. Assuming the thermal conductivity
j : X! R3 � R3, density q : X! R, and specific heat cp : X! R

as the material properties of the domain and given the heat source
f : X! R, the strong form of the convection–diffusion equations is
then expressed as: find u : X! R such that:

�r � ðjruÞ þ qcpv � ru ¼ f on X;

u ¼ �u on Cu;

jru � n ¼ q on Cq;

jru � n ¼ hðu1 � uÞ on Ch:

ð1Þ

The weak form of (1) is expressed as follows: assuming the solution
field to belong to the function space U such that
U ¼ fu : ujCu

¼ �ug � H1ðXÞ and given the function space
W ¼ fw : wjCu

¼ 0g � H1ðXÞ as the space of the weight functions,
find u 2 U such that for all w 2 W:Z

X
rw � ðjruÞ dXþ

Z
Xf

qcpwv � ru dXþ
Z

Ch

hwu dCh

¼
Z

X
wf dXþ

Z
Cq

wq dCq;þ
Z

Ch

hwu1 dCh: ð2Þ

2.1. Conventional GFEM formulation

The GFEM formulation is based on the Galerkin method where
Uh � U and Vh � V are selected such that Uh ¼ Vh. The domain X
is then discretized into M finite elements, X ffi Xh � [m

i¼1Xi, which
do not need to conform to the phase interfaces in X. The standard
Lagrangian shape functions, fNiðxÞ : x! Rgn

i¼1, are used to
approximate the solution field (and thus the weight functions)
in elements not cut by any interface, where n is the number of
nodes in each element. To retrieve the missing information in
the solution field in elements located over the interface, a set of
m enrichment functions at each node of the element,
fuijðxÞ : x! Rgn;m

i;j¼1, is employed to evaluate the gradient disconti-
nuity. The GFEM approximation of the solution field for (2) is
then expressed as:

uhðxÞ ¼
Xn

i¼1

NiðxÞ�ui þ
Xn

i¼1

NiðxÞ
Xm

j¼1

uijðxÞ~uij: ð3Þ

The first term in (3) represents the standard FEM part of the
approximation although �ui may not represent the nodal values
of the solution if the enrichment functions uij do not vanish at
the nodes. The second term, i.e., the contribution of the enrich-
ment functions to the solution field, uses the concept of the
partition of unity

Pn
i¼1NiðxÞ ¼ 1

� �
to localize the effect of enrich-

ment functions in each element and provide a uniform enrichment
along the interface. It must be noted that, for certain enrichment
functions, the enriched nodes might be extended to elements adja-
cent to those intersected by the interface, known as blending ele-
ments, to maintain optimal rate of convergence [31]. This
correction is required since the partition of unity is unable to
reproduce fully the enrichment functions in the blending elements
and thus corrective enrichment functions are employed to create a
smooth transition between standard FEM elements and those cut
by the interface.

Although the implementation of the GFEM is very similar to
that of the standard FEM, two GFEM-related implementation is-
sues need to be addressed. The first one is the quadrature in the en-
riched elements due to weak or strong discontinuities in the
enrichment functions. The most common approach to achieve an
accurate quadrature in these elements consists in dividing them
into subdomains, referred to as integration sub-elements, with
edges that conform to the phase interfaces passing through the ele-
ment [5,6]. The aspect ratio of these integration elements does not
affect the accuracy of the solution as they only serve as subdo-
mains for choosing appropriate integration points. The second is-
sue appears at enriched nodes located over the boundaries with
Dirichlet boundary conditions, i.e., prescribed values of the tem-
perature in the current work. Since the solution field at each node
is obtained from the contribution of both the standard and general-
ized dofs, and since the enrichment functions do not necessarily
disappear at the boundary nodes, the prescribed field values can-
not be directly assigned at such nodes. In this case, other ap-
proaches such as Lagrange multipliers or penalty method must
be employed to enforce the prescribed values of the solution field
at enriched nodes [32,33].

2.2. IGFEM formulation

The major difference between the IGFEM and conventional
GFEM consists in relocating the generalized dofs from nodes of
the original mesh to those of integration sub-elements located over
the interface, referred to as interface nodes. We then assign an
enrichment function to each interface node, remove the partition
of unity from the evaluation of the enrichment functions, and ex-
press the IGFEM approximation as:
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uhðxÞ ¼
Xn

i¼1

NiðxÞ �ui þ
Xk

i¼1

swiðxÞûint
i : ð4Þ

As before, the first term in (4) corresponds to the standard FEM por-
tion of the approximation. Since the generalized dofs are attached
to the interface nodes, the standard dofs in this first term always
represent the field values at the nodes of the original mesh. The sec-
ond term in (4) is the contribution of the enrichment functions in
approximating the solution field along the phase interface where
ûint

i are the generalized dofs. The enrichment functions in IGFEM,
i.e., fwiðxÞ : x! Rgn

i¼1, must capture the gradient jump in the
solution field inside an element while vanishing at the nodes and
edges of that element which are not cut by the interface. The latter
condition for the enrichment functions is necessary to avoid discon-
tinuities alongs the edges of the enriched elements and adjacent
elements, i.e., to ensure the conformity of the approximate field
along the boundary of the elements, and thus avoid any corrections
for blending elements. As explained below, the parameter s is a
scaling factor used to avoid sharp gradients in the enrichment
functions.

In this work, we describe the evaluation of the enrichment func-
tions for tetrahedral elements, although the approach can be read-
ily extended to other types of elements. Fig. 1 illustrates four
different scenarios by which a four-node tetrahedral element
may be cut by an interface and the associated division of the ele-
ment into integration subdomains. The approach adopted here
consists in creating the minimum number of integration elements
for accurate quadrature over the parent (original) element to
facilitate the evaluation of enrichment functions. A tetrahedral ele-

ment is then divided into a combination of tetrahedral and
pentahedral (wedge) elements based on the orientation of the
interface with respect to the element edges. To capture the gradi-
ent discontinuity along the interface, the enrichment functions
corresponding to Fig. 1(a)–(d) are expressed as:

ðaÞ w1 ¼ Nð1Þ1 þ Nð2Þ1 ; w2 ¼ Nð1Þ2 þ Nð2Þ4 ; w3 ¼ Nð1Þ4 þ Nð2Þ2 ;

w4 ¼ Nð1Þ5 þ Nð2Þ5 ;

ðbÞ w1 ¼ Nð1Þ1 þ Nð2Þ4 ; w2 ¼ Nð1Þ2 þ Nð2Þ5 ; w3 ¼ Nð1Þ3 þ Nð2Þ6 ;

ðcÞ w1 ¼ Nð1Þ1 þ Nð2Þ1 ; w2 ¼ Nð1Þ2 þ Nð2Þ2 þ Nð3Þ1 ;

ðdÞ w1 ¼ Nð1Þ1 þ Nð2Þ1 ;

ð5Þ

respectively. Please note that the creation of wedge element in the
IGFEM is not required and that a parent element can be discretized
using tetrahedral elements only, for which the enrichment func-
tions are constructed differently based on the number of integration
sub-elements.

A possible issue with the aforementioned approach for evaluat-
ing the enrichment functions may occur when integration ele-
ments with very high aspect ratios are created, i.e., when the
interface intersecting the tetrahedral elements happens to be very
close to one of the nodes of the original mesh. Since the Lagrangian
shape functions of these sub-elements contribute to the evaluation
of the enrichment functions in the parent element, the high aspect
ratio leads to high gradient values and thereby to an ill-
conditioned stiffness matrix. To address this issue, we employ a
scaling factor s as introduced in (4) to avoid excessively large
gradients in the enrichment functions [19]. To evaluate this param-
eter, we adopt the approach suggested in [30] and define s as:

s ¼ 2 min x1; x2ð Þ
x1 þ x2

� �2

; ð6Þ

where x1 and x1 are shown in Fig. 2.
Eq. (6) represent a parabolic function defined over the edge of

the parent element holding an interface node, with zero value at
the defining nodes of this edge and unity in the middle of it. As
the interface approaches one of the nodes of the element, the
scaled enrichment function goes to zero and vanishes when the
interface coincides with an FEM node. It must be emphasized that
the scaling factor s has a constant value in an element cut by the
interface and the quadratic function introduced in (6) has only
been implemented to evaluate this value.

A key advantage of the IGFEM is its ability to handle problems
with complex geometries or microstructures by creating
enrichment functions for special cases. Ref. [30] describes the eval-
uation of enrichment functions for the case where two or more
interfaces intersect inside an element for 2D problems. This is
achieved by creating integration elements that conform to the
geometry of the intersecting interfaces inside the parent element
and using the linear interpolation of the corresponding Lagrangian

Fig. 1. Evaluation of enrichment functions for the 3D IGFEM: four scenarios of
creating the integration subdomains composed of tetrahedral and wedge elements,
and the corresponding numbering of integration elements used to evaluate the
enrichment functions.

Fig. 2. Geometrical parameters x1 and x1used in the scaling factor entering the
enrichment function associated with interface node 1 (Eq. (6)).
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shape functions as the enrichment functions. The same approach
can be extended to 3D problems where a combination of tetrahe-
dral and wedge integration elements that conform to the phase
interfaces are used to discretize the parent element and evaluate
the associated enrichment functions. Similarly, the IGFEM provides
the framework for the evaluation of enrichment functions for more
complex cases, where most conventional GFEM formulations tend
to fail, such as cases where elements are intersected by multiple
interfaces. Fig. 3 shows one of the possible scenarios of a four-node
tetrahedral element cut by two interfaces and the corresponding
integration elements created to evaluate the enrichment functions,
which are obtained as:

w1 ¼ Nð2Þ1 þ Nð3Þ4 ; w2 ¼ Nð2Þ2 þ Nð3Þ5 ; w3 ¼ Nð2Þ3 þ Nð3Þ6 ;

w4 ¼ Nð1Þ1 þ Nð2Þ4 ; w5 ¼ Nð1Þ2 þ Nð2Þ5 ; w6 ¼ Nð1Þ3 þ Nð2Þ6 : ð7Þ

The enrichment function for other orientations of the element with
respect to the phase interfaces can be evaluated similarly.

Many of the comments made in [30] to compare the 2D
implementation of the GFEM and IGFEM apply to the 3D case
discussed here. For instance, enforcing the Dirichlet boundary con-
ditions in the IGFEM is similar to that of the standard FEM at the
nodes of the elements intersected by the interface because the gen-
eralized dofs are moved to the interface nodes. Also, the computa-
tional cost of the 3D IGFEM with tetrahedral elements compares
favorably with that of the conventional GFEM, especially for cases
where blending elements are introduced. It can be shown that the
number of generalized dofs introduced at the interface nodes in the
IGFEM is equal to that of conventional GFEM with no correction in
the blinding elements. Moreover, considerably more generalized
dofs are added in conventional GFEM if enriching all the nodes of
the blending elements is necessary for achieving the optimal rate
of convergence. In other words, the cost of the numerical solution
via IGFEM for 3D problems is equal to that of the best case of con-
ventional GFEM.

Finally, although we only address in the current work problems
with weak discontinuities, constructing the enrichment functions
for problems with strong discontinuities within the IGFEM
framework is straightforward. The enrichment functions needed
for this class of problems can simply be obtained by switching
the sign used in the linear combination of the Lagrangian functions
in (5). For instance, the enrichment functions associated with the
integration elements shown in Fig. 1 for problems with strong dis-
continuities can be written as:

w1 ¼ Nð1Þ1 � Nð2Þ4 ; w2 ¼ Nð1Þ2 � Nð2Þ5 ; w3 ¼ Nð1Þ3 � Nð2Þ6 : ð8Þ

The opposite signs of the Lagrangian shape functions in each inte-
gration element used for evaluating the enrichment functions in

(8) can then simulate the discontinuity in the solution field along
the interface.

3. Convergence study

Two example problems are presented in this section to study
the convergence rates of the 3D IGFEM. In these examples, we
use as reference solution either a closed-form solution or the solu-
tion obtained with the standard FEM with a highly refined con-
forming mesh. The IGFEM results obtained with non-conforming
meshes are then compared with those provided by the standard

Fig. 3. Creation of integration elements for the evaluation of the enrichment
functions in the IGFEM for an element cut by two interfaces.

Fig. 4. (a) Problem description, and (b) GFEM solution for the first example
problem. (c) Temperature profile along the z-axis obtained with the IGFEM solver
for both the convergence study and the patch test.
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FEM with conforming meshes with the same level of refinement to
verify the optimal rate of convergence. We provide the conver-
gence results in the L2- and H1-norm of the error, expressed as:

kekL2ðXÞ ¼ ku� uhkL2ðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

X
ðu� uhÞ2dX

s
;

kekH1ðXÞ ¼ ku� uhkH1ðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

X
ðu� uhÞ2 þ

Z
X
kru�ruhk2dX

s
:

ð9Þ

3.1. Example 1: Constant gradient jump over a flat interface

The dimensions and boundary conditions of the first example
problem are presented in Fig. 4. The cubic domain is composed
of two regions along the z-axis with conductivity values of 1 and
8 W/m K for the lower and upper sections, respectively. The
boundary conditions for this problem are prescribed temperatures
5 and 10 �C along the top and bottom surfaces, respectively, while
the other surfaces are insulated. With the origin of the Cartesian
coordinates system located at the lower front corner of the cubic
domain, a distributed heat source f ðx; y; zÞ ¼ 5000ðz2 � zþ 1Þ is ap-
plied, yielding the following exact temperature field in the domain:

u x;y;zð Þ¼ �33750z4þ833:3z3�2500z2þ70:9zþ10 if z<0:05
�4218:7z4þ104:2z3�312:5z2þ8:86zþ7:56 if z P 0:05:

(

ð10Þ

Fig. 4 illustrates the IGFEM solution field for this problem with a
nonconforming mesh built over a 16� 16� 16 grid. As expected,
the thermal conductivity mismatch generates a jump in the
gradient field at z = 5 cm. This gradient discontinuity is accurately
captured by the IGFEM as shown in Fig. 4, which depicts the tem-
perature profile along the z-axis.

Before the convergence study, we present a modified patch test
by removing the heat source applied over the domain and showing
how the IGFEM can capture the gradient discontinuity along the
interface. The exact solution for this problem is a linear variation
of the temperature along the z-direction, with a slope discontinuity
at the interface, as illustrated with the solid green line in Fig. 4. The
same figure also provides the values obtained at the nodes of the
non-conforming mesh (circles) and the temperature value ob-
tained right at the interface (square symbol), as provided by the
IGFEM enrichments. The perfect match between the analytical
and numerical results in this simple example shows that the
IGFEM satisfies the patch test. illustrates the temperature profile
along the z-axis obtained from the IGFEM solution with the non-

conforming mesh shown in Fig. 5(b), for this patch test. The circu-
lar nodes depicted on this temperature profile, which is composed
of two line segments, show the IGFEM solution at the FEM nodes,
while the rectangular node depicts the interpolation of the temper-
ature value at the phase interface in a nonconforming element cut
by this interface. As shown there, the IGFEM provides super con-
vergent results for this problem and yields the exact solution value
along the interface in a nonconforming element.

The convergence study for the original problem is conducted
using conforming structured meshes for the standard FEM, while
unstructured non-conforming meshes are used for the IGFEM solu-
tions (Fig. 5)) so that elements located across the interface are
intersected along different orientations. Fig. 6 presents the conver-
gence rates of the standard FEM and IGFEM for this problem, with
respect to both the L2- and H1-norm of the error. As shown there,
the rate of convergence of the IGFEM, without employing any cor-
rections to the blending elements, is equivalent to that of the stan-
dard FEM. As expected, due to the simplicity of the geometry, the
accuracy of the standard FEM for the same number of dofs is supe-
rior to that of the IGFEM, although the difference between the two
methods is very small.

3.2. Example 2: Non-constant gradient jump over a curved interface

In this second example, we study the convergence rate of the
IGFEM for a problem with a cylindrically shaped material interface
as shown in Fig. 7(a). The cubic domain with the length of 10 cm
contains a cylinder, extended along the y-axis, with the diameter
of 7 cm and a conductivity value five times larger than that of
the surrounding material. The prescribed temperature along the
bottom surface of the domain is ub ¼ 0 �C while a heat flux
q ¼ 105ðx� 0:05Þ þ 500 W=m2 is applied along the top surface.
Both faces in the x direction have conductive (Robin) boundary
conditions with a heat transfer coefficient of h ¼ 8 W=m2 K and
an ambient temperature u1 ¼ 20 �C, while the other two surfaces
are assumed to be insulated. The temperature field obtained from
the IGFEM solution over the domain and in half of the matrix cut at
x = 5 cm are shown in Fig. 7(b) and (c), respectively.

The IGFEM and standard FEM rates of convergence of this
second example are presented in Fig. 8. Since no analytical solu-
tion is available for this problem, we use a standard FEM solu-
tion with a very refined conforming mesh built on a
85� 85 grid as the reference solution. As in the first example,
the standard FEM solutions for this problem are obtained using
conforming meshes while the unstructured non-conforming
meshes similar to those shown in Fig. 5(b) are adopted for the
IGFEM solution.

Fig. 5. (a) Structured conforming mesh used for the standard FEM solution, and (b) unstructured non-conforming mesh used for the IGFEM solution of the first example
problem investigated in the convergence study.
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Fig. 7. (a) Problem description and IGFEM thermal solution over, (b) the entire domain, and (c) the matrix in half of the domain cut at x = 5 cm.

Fig. 6. Convergence rates in L2-norm and H1-norm of the error with respect to the mesh size (h) and total number of dofs (N) for the first example problem shown in Fig. 4.
Conforming and nonconforming meshes similar to those presented in Fig. 5 are used for the standard FEM and IGFEM solutions, respectively.
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As shown in Fig. 8, the IGFEM yields convergence rates sim-
ilar to that of the standard FEM. Moreover, for the same num-
ber of dofs, the accuracy of the IGFEM is comparable to that of
the standard FEM. It must be noted that, because of the discret-
ization error due to the presence of the curved interface, nei-

ther the standard FEM nor the IGFEM yield the optimal rate
of convergence. However, this example shows that the IGFEM
achieves a performance similar to that of the standard FEM
while removing the cost and complexity of creating conforming
meshes.

Fig. 8. Convergence rates in L2-norm and H1-norm of the error with respect to the mesh size (h) and number of dofs (N) for the second example problem described in Fig. 7.
(e) presents the convergence rate values obtained from the two most refined FEM meshes for each plot.

Fig. 9. First application problem. (a) Geometry and boundary conditions for a volume element of particulate composite with alumina inclusions embedded in a glass matrix;
(b) Distribution of embedded inclusions.
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4. Applications

The four heat transfer problems described hereafter are inspired
by applications found in engineering and material science. These
problems are all solved with the IGFEM, using structured meshes
that do not conform to the complex microstructure or geometry
of the problem.

4.1. Application 1: Particulate composite

In this first application, we use the IGFEM to extract the effec-
tive thermal properties of a particulate composite, composed of a
glass matrix with ellipsoid alumina inclusions. As described in
[34], these thermal properties depend not only on the volume frac-
tion of the fillers, but also on the size and distribution of the inclu-
sions. Therefore, the evaluation of the effective properties of the
composite involves the solution of several configurations of the
inclusions in the matrix [35]. The complexity and cost of generat-
ing conforming meshes for multiple configurations render the use
of the standard FEM very labor intensive and make mesh-indepen-
dent methods such as the IGFEM particularly attractive.

Fig. 9(a) illustrates the geometry and boundary conditions of a
unit cell of glass/alumina composite. A prescribed temperature
ub ¼ 0 �C and a uniform heat flux q ¼ 100 W=m2 compose the
boundary conditions along the bottom and top surfaces, respec-
tively, while other faces are insulated. The thermal conductivity
values of the glass matrix and alumina inclusions are jg ¼ 1:4
and ja ¼ 31 W=m K, respectively. The distribution of the alumina
beads in the glass matrix is presented in Fig. 9(b) where the

ellipsoidal inclusions have radii ranging from 0.9 to 1.3 mm and as-
pect ratios between 0.75 and 1.25.

Fig. 10 illustrates the temperature field in this problem, ob-
tained from the IGFEM solution with a non-conforming structured
mesh built on a 32� 32� 32 grid. Fig. 10(b) shows the tempera-
ture field along a diagonal place, demonstrating the heterogeneous
nature of the thermal solution inside the composite. A slice of the
temperature profile along the plane z = 4 mm is presented in
Fig. 10(c), which clearly illustrates the ability of the IGFEM to cap-

Fig. 10. (a) Temperature field in the first application problem presented in Fig. 9(a); (b) Temperature profile along one of the diagonal planes; (c) Temperature profile along
the z ¼ 4 mm plane, showing the ability of the IGFEM scheme to capture the gradient discontinuity along the particle/matrix interfaces.

Fig. 11. Second application problem: (a) Geometry and applied boundary condi-
tions of a unit cell of 3D woven composite made of epoxy matrix, glass weft and
warp fiber tows, and copper z-fibers; (b) Configuration of the weft and warp tows,
and of the z-fibers.
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ture the gradient discontinuity along the perimeter of the alumina
inclusions.

4.2. Application 2: 3D woven composites

In the second example, we use the IGFEM to evaluate the tem-
perature field in a unit cell of a 3D woven composite inspired by
the material system discussed in [36]. The dimensions, boundary
conditions, and microstructure of the unit cell are shown in
Fig. 11. The bottom surface of this 50� 18� 40 mm domain is sub-
ject to a constant heat flux q ¼ 400 W=m2, the top surface has con-
vective boundary conditions with h ¼ 7 W=m2 K and u1 ¼ 20 �C,
and other faces are insulated. The epoxy matrix holds glass fibers
in the weft and warp directions, each phase with thermal conduc-
tivities of je ¼ 0:3 W=m K and jg ¼ 0:96 W=m K, respectively. The
z-fibers weaving together the weft and warp tows are made of cop-
per with jc ¼ 401 W=m K. A high-conductivity material for the z-
fiber is adopted to increases the thermal conductivity of the com-
posite in the through-thickness direction [37].

Fig. 12 illustrates the temperature field in the unit cell and in
the fibers. A structured mesh built on a 50� 24� 40 grid is used
for the evaluation of the IGFEM solution for this problem.
Fig. 12(b) shows the role of the copper z-fiber in transferring the
heat through the thickness of the unit cell. The figure illustrates
the ability of the IGFEM to capture the gradient discontinuity along
the surface of the copper wire although the conductivity of the
copper is more than 1300 times larger than that of the surrounding
epoxy. This behavior is clearly observed in Fig. 12(c) where a slice

of the temperature field is presented along the centerline of the z-
fiber at y ¼ 9 mm.

Fig. 12. (a) Temperature field in the second application problem described in Fig. 11; (b) Temperature solution in the glass fibers and in the copper z-fiber; (c) Temperature
profile along y ¼ 9 mm.

Fig. 13. Third application problem: (a) Geometry, boundary conditions, and
material properties of a soil specimen composed of several layers where the
thermal conductivity of each layers is given in W/m K; (b) Temperature field
obtained with the IGFEM solver.
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4.3. Application 3: Laminated soil

In the third application, the temperature field in a multi-layered
soil sample with the dimensions shown in Fig. 13(a) is evaluated
with the IGFEM. The thermal conductivity of soil is a function of
several parameters such as the grain size, moisture content,
density, porosity, and organic matter and thus could be consider-
ably different from one layer to the next [38]. The temperature
of the specimen is fixed at ub ¼ 20 �C along the bottom surface of
the specimen and a constant heat flux with intensity q ¼
1000 W=m K is applied along the top boundary, while other faces
are kept insulated. The IGFEM solution obtained with a
25� 25� 75 structured mesh is presented in Fig. 13(b). The tem-
perature field is slightly warped in both the x and y directions to
emphasize the discontinuity in the gradient field across the inter-
faces between different layers.

4.4. Application 4: Actively-cooled microvascular polymeric fin

Microvascular materials are being considered for various engi-
neering applications such as autonomic materials [39,40],
biotechnology [41,42], and microelectromechanical systems
(MEMS) [43–45]. In such materials, the diameter of the embedded
microchannels varies from a few microns to a millimeter, and the
embedded network of microchannels is designed based on a vari-
ety of application-driven objective functions (thermal impact, flow
efficiency, mechanical impact, . . .) and manufacturing constraints.
In this last example problem, we employ the IGFEM to evaluate
the temperature field in an actively-cooled microvascular epoxy

fin [46–48]. The specimen dimensions, applied thermal boundary
conditions, and configuration of the microchannels are shown in
Fig. 14. The 10� 2:7� 5:2 mm epoxy fin with j ¼ 0:19 W=m K is
subject to a constant heat flux q ¼ 4000 W=m2 along the bottom
surface and convective boundary condition with h ¼ 7 W=m K
and u1 ¼ 20 �C along the other surfaces.

Fig. 14(b) illustrates the configuration of the embedded
microchannels in the epoxy matrix with diameters D ¼ 500 lm.
A sinusoidal-shaped curve with the amplitude A ¼ 2 mm and
wavelength k ¼ 5 mm describes the centerline of the microchan-
nels. The coolant circulating in the channels is water with jw ¼
0:6 W=m K; q ¼ 1000 kg=m3, and cp ¼ 4185:5 J=kg K. The middle
channel carries a flow rate of Q ¼ 2 ml/min with the entrance tem-
perature Te ¼ 20 �C while the two other microchannels have a
slightly smaller flow rate, Q = 1.5 ml/min, with Te ¼ 15 �C in the
opposite direction.

The evaluation of the convection term in (1) associated with the
fluid flow requires the knowledge of the velocity field in the micro-
channels. Due to the very small size of microchannels and the
small value of the mass flow rate, laminar flow condition with
fully-developed velocity profile adequately describes the flow in
the channels. The magnitude of the velocity in the flow direction
at a distance r from the centerline of the microchannel is then ex-
pressed as [49]:

jvj ¼ 1:5v 1� 4r2

D2

� �
;

where v is the mean velocity in the channel.

Fig. 14. (a) Geometry and boundary conditions for an actively-cooled epoxy fin; (b) Embedded sinusoidal-shape microchannels with the amplitude and wavelength of A ¼ 2
and k ¼ 5 mm, respectively, and water as the coolant with flow rates and entrance temperatures specified in the figure.

Fig. 15. (a) Temperature field in the microvascular epoxy fin shown in Fig. 14; (b) Temperature profile inside the domain, cut along the plane y ¼ 1:35 mm, emphasizing the
thermal impact of the embedded microchannels.
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The IGFEM solution for this problem is presented in Fig. 15.
From Fig. 15a, which shows the temperature field along three of
the outer surfaces of the domain, the thermal impact of the coolant
circulating in the three microchannels is clearly observable.
Fig. 15c presents details of the temperature field inside the domain
along the vertical plane y ¼ 1:35 mm (at the centerline of the mid-
dle channel), depicting the jump in the gradient field along the sur-
face of the microchannel due to the mismatch in the thermal
conductivity values.

5. Conclusions

An interface-enriched generalized finite element formulation
has been introduced to solve 3D problems characterized by discon-
tinuous gradient fields. In this method, the generalized degrees of
freedom introduce to enrich the numerical solution in non-
conforming elements traversed by a material interface are
associated with the interface nodes, and not with the nodes of
the non-conforming mesh as in conventional GFEM. This choice
leads to some implementation advantages such as the straightfor-
ward handling of Dirichlet boundary conditions. Moreover, the
number of the generalized dofs associated with the IGFEM, which
determines the computational cost of the method, is similar to that
of conventional GFEM in the absence of blending elements. The
enrichment functions for the IGFEM consist in a linear combination
of the Lagrangian shape functions defined on the integration ele-
ments. In this work, the enrichment functions for four-node tetra-
hedral elements have been derived. It was also pointed out how
the IGFEM is able to handle more complex cases such as the pres-
ence of multiple interfaces in a given element. The flexibility of the
IGFEM for evaluating the enrichment functions makes this ap-
proach highly suited for problems with intricate internal
geometries.

A detailed convergence study of the IGFEM for 3D heat transfer
problems with straight and curved interfaces has also been con-
ducted, showing that the IGFEM yields similar rate of convergence
and accuracy level with non-conforming meshes as that of the
standard FEM with conforming meshes. Thermal problems in het-
erogeneous materials and structures ranging from composites to
microvascular polymer have been investigated to demonstrate
the flexibility of the IGFEM in capturing weakly discontinuous
solutions in a variety of complex internal geometries.
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